Metamath Proof Explorer


Theorem iscnrm3lem1

Description: Lemma for iscnrm3 . Subspace topology is a topology. (Contributed by Zhi Wang, 3-Sep-2024)

Ref Expression
Assertion iscnrm3lem1 JTopxAφxAJ𝑡xTopφ

Proof

Step Hyp Ref Expression
1 resttop JTopxAJ𝑡xTop
2 1 biantrurd JTopxAφJ𝑡xTopφ
3 2 ralbidva JTopxAφxAJ𝑡xTopφ