Metamath Proof Explorer


Theorem iscnrm3rlem3

Description: Lemma for iscnrm3r . The designed subspace is a subset of the original set; the two sets are closed sets in the subspace. (Contributed by Zhi Wang, 5-Sep-2024)

Ref Expression
Assertion iscnrm3rlem3 J Top S 𝒫 J T 𝒫 J J cls J S cls J T 𝒫 J cls J S cls J T Clsd J 𝑡 J cls J S cls J T cls J T cls J S Clsd J 𝑡 J cls J S cls J T

Proof

Step Hyp Ref Expression
1 uniexg J Top J V
2 difssd J Top J cls J S cls J T J
3 1 2 sselpwd J Top J cls J S cls J T 𝒫 J
4 3 adantr J Top S 𝒫 J T 𝒫 J J cls J S cls J T 𝒫 J
5 simpl J Top S 𝒫 J T 𝒫 J J Top
6 simprl J Top S 𝒫 J T 𝒫 J S 𝒫 J
7 6 elpwid J Top S 𝒫 J T 𝒫 J S J
8 5 7 iscnrm3rlem2 J Top S 𝒫 J T 𝒫 J cls J S cls J T Clsd J 𝑡 J cls J S cls J T
9 simprr J Top S 𝒫 J T 𝒫 J T 𝒫 J
10 9 elpwid J Top S 𝒫 J T 𝒫 J T J
11 5 10 iscnrm3rlem2 J Top S 𝒫 J T 𝒫 J cls J T cls J S Clsd J 𝑡 J cls J T cls J S
12 incom cls J S cls J T = cls J T cls J S
13 12 difeq2i J cls J S cls J T = J cls J T cls J S
14 13 oveq2i J 𝑡 J cls J S cls J T = J 𝑡 J cls J T cls J S
15 14 fveq2i Clsd J 𝑡 J cls J S cls J T = Clsd J 𝑡 J cls J T cls J S
16 11 15 eleqtrrdi J Top S 𝒫 J T 𝒫 J cls J T cls J S Clsd J 𝑡 J cls J S cls J T
17 4 8 16 3jca J Top S 𝒫 J T 𝒫 J J cls J S cls J T 𝒫 J cls J S cls J T Clsd J 𝑡 J cls J S cls J T cls J T cls J S Clsd J 𝑡 J cls J S cls J T