Metamath Proof Explorer


Theorem iscnrm3rlem2

Description: Lemma for iscnrm3rlem3 . (Contributed by Zhi Wang, 5-Sep-2024)

Ref Expression
Hypotheses iscnrm3rlem2.1 φ J Top
iscnrm3rlem2.2 φ S J
Assertion iscnrm3rlem2 φ cls J S T Clsd J 𝑡 J cls J S T

Proof

Step Hyp Ref Expression
1 iscnrm3rlem2.1 φ J Top
2 iscnrm3rlem2.2 φ S J
3 eqid J = J
4 3 clscld J Top S J cls J S Clsd J
5 3 clsss3 J Top S J cls J S J
6 5 iscnrm3rlem1 J Top S J cls J S T = cls J S J cls J S T
7 ineq1 c = cls J S c J cls J S T = cls J S J cls J S T
8 7 rspceeqv cls J S Clsd J cls J S T = cls J S J cls J S T c Clsd J cls J S T = c J cls J S T
9 4 6 8 syl2anc J Top S J c Clsd J cls J S T = c J cls J S T
10 1 2 9 syl2anc φ c Clsd J cls J S T = c J cls J S T
11 difss J cls J S T J
12 3 restcld J Top J cls J S T J cls J S T Clsd J 𝑡 J cls J S T c Clsd J cls J S T = c J cls J S T
13 1 11 12 sylancl φ cls J S T Clsd J 𝑡 J cls J S T c Clsd J cls J S T = c J cls J S T
14 10 13 mpbird φ cls J S T Clsd J 𝑡 J cls J S T