Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Topology
Separated spaces: T0, T1, T2 (Hausdorff) ...
iscnrm3rlem2
Next ⟩
iscnrm3rlem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
iscnrm3rlem2
Description:
Lemma for
iscnrm3rlem3
.
(Contributed by
Zhi Wang
, 5-Sep-2024)
Ref
Expression
Hypotheses
iscnrm3rlem2.1
⊢
φ
→
J
∈
Top
iscnrm3rlem2.2
⊢
φ
→
S
⊆
⋃
J
Assertion
iscnrm3rlem2
⊢
φ
→
cls
⁡
J
⁡
S
∖
T
∈
Clsd
⁡
J
↾
𝑡
⋃
J
∖
cls
⁡
J
⁡
S
∩
T
Proof
Step
Hyp
Ref
Expression
1
iscnrm3rlem2.1
⊢
φ
→
J
∈
Top
2
iscnrm3rlem2.2
⊢
φ
→
S
⊆
⋃
J
3
eqid
⊢
⋃
J
=
⋃
J
4
3
clscld
⊢
J
∈
Top
∧
S
⊆
⋃
J
→
cls
⁡
J
⁡
S
∈
Clsd
⁡
J
5
3
clsss3
⊢
J
∈
Top
∧
S
⊆
⋃
J
→
cls
⁡
J
⁡
S
⊆
⋃
J
6
5
iscnrm3rlem1
⊢
J
∈
Top
∧
S
⊆
⋃
J
→
cls
⁡
J
⁡
S
∖
T
=
cls
⁡
J
⁡
S
∩
⋃
J
∖
cls
⁡
J
⁡
S
∩
T
7
ineq1
⊢
c
=
cls
⁡
J
⁡
S
→
c
∩
⋃
J
∖
cls
⁡
J
⁡
S
∩
T
=
cls
⁡
J
⁡
S
∩
⋃
J
∖
cls
⁡
J
⁡
S
∩
T
8
7
rspceeqv
⊢
cls
⁡
J
⁡
S
∈
Clsd
⁡
J
∧
cls
⁡
J
⁡
S
∖
T
=
cls
⁡
J
⁡
S
∩
⋃
J
∖
cls
⁡
J
⁡
S
∩
T
→
∃
c
∈
Clsd
⁡
J
cls
⁡
J
⁡
S
∖
T
=
c
∩
⋃
J
∖
cls
⁡
J
⁡
S
∩
T
9
4
6
8
syl2anc
⊢
J
∈
Top
∧
S
⊆
⋃
J
→
∃
c
∈
Clsd
⁡
J
cls
⁡
J
⁡
S
∖
T
=
c
∩
⋃
J
∖
cls
⁡
J
⁡
S
∩
T
10
1
2
9
syl2anc
⊢
φ
→
∃
c
∈
Clsd
⁡
J
cls
⁡
J
⁡
S
∖
T
=
c
∩
⋃
J
∖
cls
⁡
J
⁡
S
∩
T
11
difss
⊢
⋃
J
∖
cls
⁡
J
⁡
S
∩
T
⊆
⋃
J
12
3
restcld
⊢
J
∈
Top
∧
⋃
J
∖
cls
⁡
J
⁡
S
∩
T
⊆
⋃
J
→
cls
⁡
J
⁡
S
∖
T
∈
Clsd
⁡
J
↾
𝑡
⋃
J
∖
cls
⁡
J
⁡
S
∩
T
↔
∃
c
∈
Clsd
⁡
J
cls
⁡
J
⁡
S
∖
T
=
c
∩
⋃
J
∖
cls
⁡
J
⁡
S
∩
T
13
1
11
12
sylancl
⊢
φ
→
cls
⁡
J
⁡
S
∖
T
∈
Clsd
⁡
J
↾
𝑡
⋃
J
∖
cls
⁡
J
⁡
S
∩
T
↔
∃
c
∈
Clsd
⁡
J
cls
⁡
J
⁡
S
∖
T
=
c
∩
⋃
J
∖
cls
⁡
J
⁡
S
∩
T
14
10
13
mpbird
⊢
φ
→
cls
⁡
J
⁡
S
∖
T
∈
Clsd
⁡
J
↾
𝑡
⋃
J
∖
cls
⁡
J
⁡
S
∩
T