Metamath Proof Explorer


Theorem iscnrm4

Description: A completely normal topology is a topology in which two separated sets can be separated by neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024)

Ref Expression
Assertion iscnrm4 JCNrmJTops𝒫Jt𝒫JsclsJt=clsJst=nneiJsmneiJtnm=

Proof

Step Hyp Ref Expression
1 iscnrm3 JCNrmJTops𝒫Jt𝒫JsclsJt=clsJst=nJmJsntmnm=
2 id JTopJTop
3 2 sepnsepo JTopnneiJsmneiJtnm=nJmJsntmnm=
4 3 imbi2d JTopsclsJt=clsJst=nneiJsmneiJtnm=sclsJt=clsJst=nJmJsntmnm=
5 4 2ralbidv JTops𝒫Jt𝒫JsclsJt=clsJst=nneiJsmneiJtnm=s𝒫Jt𝒫JsclsJt=clsJst=nJmJsntmnm=
6 5 pm5.32i JTops𝒫Jt𝒫JsclsJt=clsJst=nneiJsmneiJtnm=JTops𝒫Jt𝒫JsclsJt=clsJst=nJmJsntmnm=
7 1 6 bitr4i JCNrmJTops𝒫Jt𝒫JsclsJt=clsJst=nneiJsmneiJtnm=