Metamath Proof Explorer


Theorem iscplgrnb

Description: A graph is complete iff all vertices are neighbors of all vertices. (Contributed by AV, 1-Nov-2020)

Ref Expression
Hypothesis cplgruvtxb.v V=VtxG
Assertion iscplgrnb GWGComplGraphvVnVvnGNeighbVtxv

Proof

Step Hyp Ref Expression
1 cplgruvtxb.v V=VtxG
2 1 iscplgr GWGComplGraphvVvUnivVtxG
3 1 uvtxel vUnivVtxGvVnVvnGNeighbVtxv
4 3 a1i GWvUnivVtxGvVnVvnGNeighbVtxv
5 4 baibd GWvVvUnivVtxGnVvnGNeighbVtxv
6 5 ralbidva GWvVvUnivVtxGvVnVvnGNeighbVtxv
7 2 6 bitrd GWGComplGraphvVnVvnGNeighbVtxv