Metamath Proof Explorer


Theorem isdmn2

Description: The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion isdmn2 R Dmn R PrRing R CRingOps

Proof

Step Hyp Ref Expression
1 isdmn R Dmn R PrRing R Com2
2 prrngorngo R PrRing R RingOps
3 iscrngo R CRingOps R RingOps R Com2
4 3 baibr R RingOps R Com2 R CRingOps
5 2 4 syl R PrRing R Com2 R CRingOps
6 5 pm5.32i R PrRing R Com2 R PrRing R CRingOps
7 1 6 bitri R Dmn R PrRing R CRingOps