Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Prime rings and integral domains
isdmn2
Next ⟩
dmncrng
Metamath Proof Explorer
Ascii
Unicode
Theorem
isdmn2
Description:
The predicate "is a domain".
(Contributed by
Jeff Madsen
, 10-Jun-2010)
Ref
Expression
Assertion
isdmn2
⊢
R
∈
Dmn
↔
R
∈
PrRing
∧
R
∈
CRingOps
Proof
Step
Hyp
Ref
Expression
1
isdmn
⊢
R
∈
Dmn
↔
R
∈
PrRing
∧
R
∈
Com2
2
prrngorngo
⊢
R
∈
PrRing
→
R
∈
RingOps
3
iscrngo
⊢
R
∈
CRingOps
↔
R
∈
RingOps
∧
R
∈
Com2
4
3
baibr
⊢
R
∈
RingOps
→
R
∈
Com2
↔
R
∈
CRingOps
5
2
4
syl
⊢
R
∈
PrRing
→
R
∈
Com2
↔
R
∈
CRingOps
6
5
pm5.32i
⊢
R
∈
PrRing
∧
R
∈
Com2
↔
R
∈
PrRing
∧
R
∈
CRingOps
7
1
6
bitri
⊢
R
∈
Dmn
↔
R
∈
PrRing
∧
R
∈
CRingOps