Metamath Proof Explorer


Theorem isdomn5

Description: The right conjunct in the right hand side of the equivalence of isdomn is logically equivalent to a less symmetric version where one of the variables is restricted to be nonzero. (Contributed by SN, 16-Sep-2024)

Ref Expression
Assertion isdomn5 a B b B a · ˙ b = 0 ˙ a = 0 ˙ b = 0 ˙ a B 0 ˙ b B a · ˙ b = 0 ˙ b = 0 ˙

Proof

Step Hyp Ref Expression
1 bi2.04 ¬ a = 0 ˙ a · ˙ b = 0 ˙ b = 0 ˙ a · ˙ b = 0 ˙ ¬ a = 0 ˙ b = 0 ˙
2 df-ne a 0 ˙ ¬ a = 0 ˙
3 2 imbi1i a 0 ˙ a · ˙ b = 0 ˙ b = 0 ˙ ¬ a = 0 ˙ a · ˙ b = 0 ˙ b = 0 ˙
4 df-or a = 0 ˙ b = 0 ˙ ¬ a = 0 ˙ b = 0 ˙
5 4 imbi2i a · ˙ b = 0 ˙ a = 0 ˙ b = 0 ˙ a · ˙ b = 0 ˙ ¬ a = 0 ˙ b = 0 ˙
6 1 3 5 3bitr4ri a · ˙ b = 0 ˙ a = 0 ˙ b = 0 ˙ a 0 ˙ a · ˙ b = 0 ˙ b = 0 ˙
7 6 2ralbii a B b B a · ˙ b = 0 ˙ a = 0 ˙ b = 0 ˙ a B b B a 0 ˙ a · ˙ b = 0 ˙ b = 0 ˙
8 r19.21v b B a 0 ˙ a · ˙ b = 0 ˙ b = 0 ˙ a 0 ˙ b B a · ˙ b = 0 ˙ b = 0 ˙
9 8 ralbii a B b B a 0 ˙ a · ˙ b = 0 ˙ b = 0 ˙ a B a 0 ˙ b B a · ˙ b = 0 ˙ b = 0 ˙
10 raldifsnb a B a 0 ˙ b B a · ˙ b = 0 ˙ b = 0 ˙ a B 0 ˙ b B a · ˙ b = 0 ˙ b = 0 ˙
11 7 9 10 3bitri a B b B a · ˙ b = 0 ˙ a = 0 ˙ b = 0 ˙ a B 0 ˙ b B a · ˙ b = 0 ˙ b = 0 ˙