Metamath Proof Explorer


Theorem isdomn5

Description: The right conjunct in the right hand side of the equivalence of isdomn is logically equivalent to a less symmetric version where one of the variables is restricted to be nonzero. (Contributed by SN, 16-Sep-2024)

Ref Expression
Assertion isdomn5 aBbBa·˙b=0˙a=0˙b=0˙aB0˙bBa·˙b=0˙b=0˙

Proof

Step Hyp Ref Expression
1 bi2.04 ¬a=0˙a·˙b=0˙b=0˙a·˙b=0˙¬a=0˙b=0˙
2 df-ne a0˙¬a=0˙
3 2 imbi1i a0˙a·˙b=0˙b=0˙¬a=0˙a·˙b=0˙b=0˙
4 df-or a=0˙b=0˙¬a=0˙b=0˙
5 4 imbi2i a·˙b=0˙a=0˙b=0˙a·˙b=0˙¬a=0˙b=0˙
6 1 3 5 3bitr4ri a·˙b=0˙a=0˙b=0˙a0˙a·˙b=0˙b=0˙
7 6 2ralbii aBbBa·˙b=0˙a=0˙b=0˙aBbBa0˙a·˙b=0˙b=0˙
8 r19.21v bBa0˙a·˙b=0˙b=0˙a0˙bBa·˙b=0˙b=0˙
9 8 ralbii aBbBa0˙a·˙b=0˙b=0˙aBa0˙bBa·˙b=0˙b=0˙
10 raldifsnb aBa0˙bBa·˙b=0˙b=0˙aB0˙bBa·˙b=0˙b=0˙
11 7 9 10 3bitri aBbBa·˙b=0˙a=0˙b=0˙aB0˙bBa·˙b=0˙b=0˙