Metamath Proof Explorer


Theorem isf32lem10

Description: Lemma for isfin3-2 . Write in terms of weak dominance. (Contributed by Stefan O'Rear, 6-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Hypotheses isf32lem.a φF:ω𝒫G
isf32lem.b φxωFsucxFx
isf32lem.c φ¬ranFranF
isf32lem.d S=yω|FsucyFy
isf32lem.e J=uωιvS|vSu
isf32lem.f K=wSFwFsucwJ
isf32lem.g L=tGιs|sωtKs
Assertion isf32lem10 φGVω*G

Proof

Step Hyp Ref Expression
1 isf32lem.a φF:ω𝒫G
2 isf32lem.b φxωFsucxFx
3 isf32lem.c φ¬ranFranF
4 isf32lem.d S=yω|FsucyFy
5 isf32lem.e J=uωιvS|vSu
6 isf32lem.f K=wSFwFsucwJ
7 isf32lem.g L=tGιs|sωtKs
8 1 2 3 4 5 6 7 isf32lem9 φL:Gontoω
9 fof L:GontoωL:Gω
10 8 9 syl φL:Gω
11 fex L:GωGVLV
12 10 11 sylan φGVLV
13 12 ex φGVLV
14 fowdom LVL:Gontoωω*G
15 14 expcom L:GontoωLVω*G
16 8 13 15 sylsyld φGVω*G