Metamath Proof Explorer


Theorem isf34lem3

Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Hypothesis compss.a F=x𝒫AAx
Assertion isf34lem3 AVX𝒫AFFX=X

Proof

Step Hyp Ref Expression
1 compss.a F=x𝒫AAx
2 1 compsscnv F-1=F
3 2 imaeq1i F-1FX=FFX
4 1 compssiso AVFIsom[⊂],[⊂]-1𝒫A𝒫A
5 isof1o FIsom[⊂],[⊂]-1𝒫A𝒫AF:𝒫A1-1 onto𝒫A
6 f1of1 F:𝒫A1-1 onto𝒫AF:𝒫A1-1𝒫A
7 4 5 6 3syl AVF:𝒫A1-1𝒫A
8 f1imacnv F:𝒫A1-1𝒫AX𝒫AF-1FX=X
9 7 8 sylan AVX𝒫AF-1FX=X
10 3 9 eqtr3id AVX𝒫AFFX=X