Metamath Proof Explorer


Theorem isfin1a

Description: Definition of a Ia-finite set. (Contributed by Stefan O'Rear, 16-May-2015)

Ref Expression
Assertion isfin1a AVAFinIay𝒫AyFinAyFin

Proof

Step Hyp Ref Expression
1 pweq x=A𝒫x=𝒫A
2 difeq1 x=Axy=Ay
3 2 eleq1d x=AxyFinAyFin
4 3 orbi2d x=AyFinxyFinyFinAyFin
5 1 4 raleqbidv x=Ay𝒫xyFinxyFiny𝒫AyFinAyFin
6 df-fin1a FinIa=x|y𝒫xyFinxyFin
7 5 6 elab2g AVAFinIay𝒫AyFinAyFin