Metamath Proof Explorer


Theorem isfin2

Description: Definition of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015)

Ref Expression
Assertion isfin2 AVAFinIIy𝒫𝒫Ay[⊂]Oryyy

Proof

Step Hyp Ref Expression
1 pweq x=A𝒫x=𝒫A
2 1 pweqd x=A𝒫𝒫x=𝒫𝒫A
3 2 raleqdv x=Ay𝒫𝒫xy[⊂]Oryyyy𝒫𝒫Ay[⊂]Oryyy
4 df-fin2 FinII=x|y𝒫𝒫xy[⊂]Oryyy
5 3 4 elab2g AVAFinIIy𝒫𝒫Ay[⊂]Oryyy