Metamath Proof Explorer


Theorem fin2i

Description: Property of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015)

Ref Expression
Assertion fin2i AFinIIB𝒫AB[⊂]OrBBB

Proof

Step Hyp Ref Expression
1 neeq1 y=ByB
2 soeq2 y=B[⊂]Ory[⊂]OrB
3 1 2 anbi12d y=By[⊂]OryB[⊂]OrB
4 unieq y=By=B
5 id y=By=B
6 4 5 eleq12d y=ByyBB
7 3 6 imbi12d y=By[⊂]OryyyB[⊂]OrBBB
8 isfin2 AFinIIAFinIIy𝒫𝒫Ay[⊂]Oryyy
9 8 ibi AFinIIy𝒫𝒫Ay[⊂]Oryyy
10 9 adantr AFinIIB𝒫Ay𝒫𝒫Ay[⊂]Oryyy
11 pwexg AFinII𝒫AV
12 elpw2g 𝒫AVB𝒫𝒫AB𝒫A
13 11 12 syl AFinIIB𝒫𝒫AB𝒫A
14 13 biimpar AFinIIB𝒫AB𝒫𝒫A
15 7 10 14 rspcdva AFinIIB𝒫AB[⊂]OrBBB
16 15 imp AFinIIB𝒫AB[⊂]OrBBB