Metamath Proof Explorer


Theorem isfinite4

Description: A finite set is equinumerous to the range of integers from one up to the hash value of the set. In other words, counting objects with natural numbers works if and only if it is a finite collection. (Contributed by Richard Penner, 26-Feb-2020)

Ref Expression
Assertion isfinite4 AFin1AA

Proof

Step Hyp Ref Expression
1 hashcl AFinA0
2 hashfz1 A01A=A
3 1 2 syl AFin1A=A
4 fzfi 1AFin
5 hashen 1AFinAFin1A=A1AA
6 4 5 mpan AFin1A=A1AA
7 3 6 mpbid AFin1AA
8 ensym 1AAA1A
9 enfi A1AAFin1AFin
10 9 biimprcd 1AFinA1AAFin
11 4 8 10 mpsyl 1AAAFin
12 7 11 impbii AFin1AA