Metamath Proof Explorer


Theorem isfusgr

Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020) (Revised by AV, 21-Oct-2020)

Ref Expression
Hypothesis isfusgr.v V=VtxG
Assertion isfusgr GFinUSGraphGUSGraphVFin

Proof

Step Hyp Ref Expression
1 isfusgr.v V=VtxG
2 fveq2 g=GVtxg=VtxG
3 2 1 eqtr4di g=GVtxg=V
4 3 eleq1d g=GVtxgFinVFin
5 df-fusgr FinUSGraph=gUSGraph|VtxgFin
6 4 5 elrab2 GFinUSGraphGUSGraphVFin