Metamath Proof Explorer


Theorem isfxp

Description: Property of being a fixed point. (Contributed by Thierry Arnoux, 18-Nov-2025)

Ref Expression
Hypotheses fxpgaval.s U = Base G
fxpgaval.a φ A G GrpAct C
isfxp.x φ X C
Assertion isfxp Could not format assertion : No typesetting found for |- ( ph -> ( X e. ( C FixPts A ) <-> A. p e. U ( p A X ) = X ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 fxpgaval.s U = Base G
2 fxpgaval.a φ A G GrpAct C
3 isfxp.x φ X C
4 1 2 fxpgaval Could not format ( ph -> ( C FixPts A ) = { x e. C | A. p e. U ( p A x ) = x } ) : No typesetting found for |- ( ph -> ( C FixPts A ) = { x e. C | A. p e. U ( p A x ) = x } ) with typecode |-
5 4 eleq2d Could not format ( ph -> ( X e. ( C FixPts A ) <-> X e. { x e. C | A. p e. U ( p A x ) = x } ) ) : No typesetting found for |- ( ph -> ( X e. ( C FixPts A ) <-> X e. { x e. C | A. p e. U ( p A x ) = x } ) ) with typecode |-
6 oveq2 x = X p A x = p A X
7 id x = X x = X
8 6 7 eqeq12d x = X p A x = x p A X = X
9 8 ralbidv x = X p U p A x = x p U p A X = X
10 9 elrab X x C | p U p A x = x X C p U p A X = X
11 5 10 bitrdi Could not format ( ph -> ( X e. ( C FixPts A ) <-> ( X e. C /\ A. p e. U ( p A X ) = X ) ) ) : No typesetting found for |- ( ph -> ( X e. ( C FixPts A ) <-> ( X e. C /\ A. p e. U ( p A X ) = X ) ) ) with typecode |-
12 3 11 mpbirand Could not format ( ph -> ( X e. ( C FixPts A ) <-> A. p e. U ( p A X ) = X ) ) : No typesetting found for |- ( ph -> ( X e. ( C FixPts A ) <-> A. p e. U ( p A X ) = X ) ) with typecode |-