Metamath Proof Explorer


Theorem isirred2

Description: Expand out the class difference from isirred . (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses isirred2.1 B=BaseR
isirred2.2 U=UnitR
isirred2.3 I=IrredR
isirred2.4 ·˙=R
Assertion isirred2 XIXB¬XUxByBx·˙y=XxUyU

Proof

Step Hyp Ref Expression
1 isirred2.1 B=BaseR
2 isirred2.2 U=UnitR
3 isirred2.3 I=IrredR
4 isirred2.4 ·˙=R
5 eldif XBUXB¬XU
6 eldif xBUxB¬xU
7 eldif yBUyB¬yU
8 6 7 anbi12i xBUyBUxB¬xUyB¬yU
9 an4 xB¬xUyB¬yUxByB¬xU¬yU
10 8 9 bitri xBUyBUxByB¬xU¬yU
11 10 imbi1i xBUyBUx·˙yXxByB¬xU¬yUx·˙yX
12 impexp xByB¬xU¬yUx·˙yXxByB¬xU¬yUx·˙yX
13 pm4.56 ¬xU¬yU¬xUyU
14 df-ne x·˙yX¬x·˙y=X
15 13 14 imbi12i ¬xU¬yUx·˙yX¬xUyU¬x·˙y=X
16 con34b x·˙y=XxUyU¬xUyU¬x·˙y=X
17 15 16 bitr4i ¬xU¬yUx·˙yXx·˙y=XxUyU
18 17 imbi2i xByB¬xU¬yUx·˙yXxByBx·˙y=XxUyU
19 12 18 bitri xByB¬xU¬yUx·˙yXxByBx·˙y=XxUyU
20 11 19 bitri xBUyBUx·˙yXxByBx·˙y=XxUyU
21 20 2albii xyxBUyBUx·˙yXxyxByBx·˙y=XxUyU
22 r2al xBUyBUx·˙yXxyxBUyBUx·˙yX
23 r2al xByBx·˙y=XxUyUxyxByBx·˙y=XxUyU
24 21 22 23 3bitr4i xBUyBUx·˙yXxByBx·˙y=XxUyU
25 5 24 anbi12i XBUxBUyBUx·˙yXXB¬XUxByBx·˙y=XxUyU
26 eqid BU=BU
27 1 2 3 26 4 isirred XIXBUxBUyBUx·˙yX
28 df-3an XB¬XUxByBx·˙y=XxUyUXB¬XUxByBx·˙y=XxUyU
29 25 27 28 3bitr4i XIXB¬XUxByBx·˙y=XxUyU