Metamath Proof Explorer


Theorem islbs4

Description: A basis is an independent spanning set. This could have been used as alternative definition of a basis: LBasis = ( w e. _V |-> { b e. ~P ( Basew ) | ( ( ( LSpanw ) ` `b ) = ( Basew ) /\ b e. ( LIndSw ) ) } ) . (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypotheses islbs4.b B=BaseW
islbs4.j J=LBasisW
islbs4.k K=LSpanW
Assertion islbs4 XJXLIndSWKX=B

Proof

Step Hyp Ref Expression
1 islbs4.b B=BaseW
2 islbs4.j J=LBasisW
3 islbs4.k K=LSpanW
4 elfvex XLBasisWWV
5 4 2 eleq2s XJWV
6 elfvex XLIndSWWV
7 6 adantr XLIndSWKX=BWV
8 eqid ScalarW=ScalarW
9 eqid W=W
10 eqid BaseScalarW=BaseScalarW
11 eqid 0ScalarW=0ScalarW
12 1 8 9 10 2 3 11 islbs WVXJXBKX=BxXkBaseScalarW0ScalarW¬kWxKXx
13 3anan32 XBKX=BxXkBaseScalarW0ScalarW¬kWxKXxXBxXkBaseScalarW0ScalarW¬kWxKXxKX=B
14 1 9 3 8 10 11 islinds2 WVXLIndSWXBxXkBaseScalarW0ScalarW¬kWxKXx
15 14 anbi1d WVXLIndSWKX=BXBxXkBaseScalarW0ScalarW¬kWxKXxKX=B
16 13 15 bitr4id WVXBKX=BxXkBaseScalarW0ScalarW¬kWxKXxXLIndSWKX=B
17 12 16 bitrd WVXJXLIndSWKX=B
18 5 7 17 pm5.21nii XJXLIndSWKX=B