Description: A basis is an independent spanning set. This could have been used as alternative definition of a basis: LBasis = ( w e. _V |-> { b e. ~P ( Basew ) | ( ( ( LSpanw ) ` `b ) = ( Basew ) /\ b e. ( LIndSw ) ) } ) . (Contributed by Stefan O'Rear, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | islbs4.b | |
|
islbs4.j | |
||
islbs4.k | |
||
Assertion | islbs4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islbs4.b | |
|
2 | islbs4.j | |
|
3 | islbs4.k | |
|
4 | elfvex | |
|
5 | 4 2 | eleq2s | |
6 | elfvex | |
|
7 | 6 | adantr | |
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | 1 8 9 10 2 3 11 | islbs | |
13 | 3anan32 | |
|
14 | 1 9 3 8 10 11 | islinds2 | |
15 | 14 | anbi1d | |
16 | 13 15 | bitr4id | |
17 | 12 16 | bitrd | |
18 | 5 7 17 | pm5.21nii | |