Metamath Proof Explorer


Theorem islmim2

Description: An isomorphism of left modules is a homomorphism whose converse is a homomorphism. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion islmim2 FRLMIsoSFRLMHomSF-1SLMHomR

Proof

Step Hyp Ref Expression
1 eqid BaseR=BaseR
2 eqid BaseS=BaseS
3 1 2 islmim FRLMIsoSFRLMHomSF:BaseR1-1 ontoBaseS
4 1 2 lmhmf1o FRLMHomSF:BaseR1-1 ontoBaseSF-1SLMHomR
5 4 pm5.32i FRLMHomSF:BaseR1-1 ontoBaseSFRLMHomSF-1SLMHomR
6 3 5 bitri FRLMIsoSFRLMHomSF-1SLMHomR