Metamath Proof Explorer


Theorem islpln2ah

Description: The predicate "is a lattice plane" for join of atoms. Version of islpln2a expressed with an abbreviation hypothesis. (Contributed by NM, 30-Jul-2012)

Ref Expression
Hypotheses islpln2a.l ˙=K
islpln2a.j ˙=joinK
islpln2a.a A=AtomsK
islpln2a.p P=LPlanesK
islpln2a.y Y=Q˙R˙S
Assertion islpln2ah KHLQARASAYPQR¬S˙Q˙R

Proof

Step Hyp Ref Expression
1 islpln2a.l ˙=K
2 islpln2a.j ˙=joinK
3 islpln2a.a A=AtomsK
4 islpln2a.p P=LPlanesK
5 islpln2a.y Y=Q˙R˙S
6 5 eleq1i YPQ˙R˙SP
7 1 2 3 4 islpln2a KHLQARASAQ˙R˙SPQR¬S˙Q˙R
8 6 7 bitrid KHLQARASAYPQR¬S˙Q˙R