| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islpln2a.l |
|
| 2 |
|
islpln2a.j |
|
| 3 |
|
islpln2a.a |
|
| 4 |
|
islpln2a.p |
|
| 5 |
|
oveq1 |
|
| 6 |
2 3
|
hlatjidm |
|
| 7 |
6
|
3ad2antr2 |
|
| 8 |
5 7
|
sylan9eqr |
|
| 9 |
8
|
oveq1d |
|
| 10 |
|
simpll |
|
| 11 |
|
simplr2 |
|
| 12 |
|
simplr3 |
|
| 13 |
2 3 4
|
2atnelpln |
|
| 14 |
10 11 12 13
|
syl3anc |
|
| 15 |
9 14
|
eqneltrd |
|
| 16 |
15
|
ex |
|
| 17 |
16
|
necon2ad |
|
| 18 |
|
hllat |
|
| 19 |
18
|
adantr |
|
| 20 |
|
simpr3 |
|
| 21 |
|
eqid |
|
| 22 |
21 3
|
atbase |
|
| 23 |
20 22
|
syl |
|
| 24 |
21 2 3
|
hlatjcl |
|
| 25 |
24
|
3adant3r3 |
|
| 26 |
21 1 2
|
latleeqj2 |
|
| 27 |
19 23 25 26
|
syl3anc |
|
| 28 |
2 3 4
|
2atnelpln |
|
| 29 |
28
|
3adant3r3 |
|
| 30 |
|
eleq1 |
|
| 31 |
30
|
notbid |
|
| 32 |
29 31
|
syl5ibrcom |
|
| 33 |
27 32
|
sylbid |
|
| 34 |
33
|
con2d |
|
| 35 |
17 34
|
jcad |
|
| 36 |
1 2 3 4
|
lplni2 |
|
| 37 |
36
|
3expia |
|
| 38 |
35 37
|
impbid |
|