Metamath Proof Explorer


Theorem 2atnelpln

Description: The join of two atoms is not a lattice plane. (Contributed by NM, 16-Jul-2012)

Ref Expression
Hypotheses 2atnelpln.j ˙ = join K
2atnelpln.a A = Atoms K
2atnelpln.p P = LPlanes K
Assertion 2atnelpln K HL Q A R A ¬ Q ˙ R P

Proof

Step Hyp Ref Expression
1 2atnelpln.j ˙ = join K
2 2atnelpln.a A = Atoms K
3 2atnelpln.p P = LPlanes K
4 hllat K HL K Lat
5 4 3ad2ant1 K HL Q A R A K Lat
6 eqid Base K = Base K
7 6 1 2 hlatjcl K HL Q A R A Q ˙ R Base K
8 eqid K = K
9 6 8 latref K Lat Q ˙ R Base K Q ˙ R K Q ˙ R
10 5 7 9 syl2anc K HL Q A R A Q ˙ R K Q ˙ R
11 simpl1 K HL Q A R A Q ˙ R P K HL
12 simpr K HL Q A R A Q ˙ R P Q ˙ R P
13 simpl2 K HL Q A R A Q ˙ R P Q A
14 simpl3 K HL Q A R A Q ˙ R P R A
15 8 1 2 3 lplnnle2at K HL Q ˙ R P Q A R A ¬ Q ˙ R K Q ˙ R
16 11 12 13 14 15 syl13anc K HL Q A R A Q ˙ R P ¬ Q ˙ R K Q ˙ R
17 16 ex K HL Q A R A Q ˙ R P ¬ Q ˙ R K Q ˙ R
18 10 17 mt2d K HL Q A R A ¬ Q ˙ R P