Metamath Proof Explorer


Theorem 2atnelpln

Description: The join of two atoms is not a lattice plane. (Contributed by NM, 16-Jul-2012)

Ref Expression
Hypotheses 2atnelpln.j ˙=joinK
2atnelpln.a A=AtomsK
2atnelpln.p P=LPlanesK
Assertion 2atnelpln KHLQARA¬Q˙RP

Proof

Step Hyp Ref Expression
1 2atnelpln.j ˙=joinK
2 2atnelpln.a A=AtomsK
3 2atnelpln.p P=LPlanesK
4 hllat KHLKLat
5 4 3ad2ant1 KHLQARAKLat
6 eqid BaseK=BaseK
7 6 1 2 hlatjcl KHLQARAQ˙RBaseK
8 eqid K=K
9 6 8 latref KLatQ˙RBaseKQ˙RKQ˙R
10 5 7 9 syl2anc KHLQARAQ˙RKQ˙R
11 simpl1 KHLQARAQ˙RPKHL
12 simpr KHLQARAQ˙RPQ˙RP
13 simpl2 KHLQARAQ˙RPQA
14 simpl3 KHLQARAQ˙RPRA
15 8 1 2 3 lplnnle2at KHLQ˙RPQARA¬Q˙RKQ˙R
16 11 12 13 14 15 syl13anc KHLQARAQ˙RP¬Q˙RKQ˙R
17 16 ex KHLQARAQ˙RP¬Q˙RKQ˙R
18 10 17 mt2d KHLQARA¬Q˙RP