Metamath Proof Explorer


Theorem ismndo

Description: The predicate "is a monoid". (Contributed by FL, 2-Nov-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypothesis ismndo.1 X=domdomG
Assertion ismndo GAGMndOpGSemiGrpxXyXxGy=yyGx=y

Proof

Step Hyp Ref Expression
1 ismndo.1 X=domdomG
2 df-mndo MndOp=SemiGrpExId
3 2 eleq2i GMndOpGSemiGrpExId
4 elin GSemiGrpExIdGSemiGrpGExId
5 1 isexid GAGExIdxXyXxGy=yyGx=y
6 5 anbi2d GAGSemiGrpGExIdGSemiGrpxXyXxGy=yyGx=y
7 4 6 bitrid GAGSemiGrpExIdGSemiGrpxXyXxGy=yyGx=y
8 3 7 bitrid GAGMndOpGSemiGrpxXyXxGy=yyGx=y