Metamath Proof Explorer


Theorem isnvc2

Description: A normed vector space is just a normed module whose scalar ring is a division ring. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypothesis isnvc2.1 F=ScalarW
Assertion isnvc2 WNrmVecWNrmModFDivRing

Proof

Step Hyp Ref Expression
1 isnvc2.1 F=ScalarW
2 isnvc WNrmVecWNrmModWLVec
3 nlmlmod WNrmModWLMod
4 1 islvec WLVecWLModFDivRing
5 4 baib WLModWLVecFDivRing
6 3 5 syl WNrmModWLVecFDivRing
7 6 pm5.32i WNrmModWLVecWNrmModFDivRing
8 2 7 bitri WNrmVecWNrmModFDivRing