Metamath Proof Explorer


Theorem isoas

Description: Congruence theorem for isocele triangles: if two angles of a triangle are congruent, then the corresponding sides also are. (Contributed by Thierry Arnoux, 5-Oct-2020)

Ref Expression
Hypotheses isoas.p P=BaseG
isoas.m -˙=distG
isoas.i I=ItvG
isoas.l L=Line𝒢G
isoas.g φG𝒢Tarski
isoas.a φAP
isoas.b φBP
isoas.c φCP
isoas.1 φ¬CALBA=B
isoas.2 φ⟨“ABC”⟩𝒢G⟨“ACB”⟩
Assertion isoas φA-˙B=A-˙C

Proof

Step Hyp Ref Expression
1 isoas.p P=BaseG
2 isoas.m -˙=distG
3 isoas.i I=ItvG
4 isoas.l L=Line𝒢G
5 isoas.g φG𝒢Tarski
6 isoas.a φAP
7 isoas.b φBP
8 isoas.c φCP
9 isoas.1 φ¬CALBA=B
10 isoas.2 φ⟨“ABC”⟩𝒢G⟨“ACB”⟩
11 eqid 𝒢G=𝒢G
12 1 4 3 5 6 7 8 9 ncolrot1 φ¬ABLCB=C
13 1 2 3 5 7 8 axtgcgrrflx φB-˙C=C-˙B
14 eqid hl𝒢G=hl𝒢G
15 1 3 5 14 6 7 8 6 8 7 10 cgracom φ⟨“ACB”⟩𝒢G⟨“ABC”⟩
16 1 3 2 5 6 8 7 6 7 8 15 cgraswaplr φ⟨“BCA”⟩𝒢G⟨“CBA”⟩
17 1 2 3 5 7 8 6 8 7 6 4 12 13 16 10 tgasa φ⟨“BCA”⟩𝒢G⟨“CBA”⟩
18 1 2 3 11 5 7 8 6 8 7 6 17 cgr3simp3 φA-˙B=A-˙C