Metamath Proof Explorer


Theorem isocnv2

Description: Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014)

Ref Expression
Assertion isocnv2 HIsomR,SABHIsomR-1,S-1AB

Proof

Step Hyp Ref Expression
1 ralcom yAxAyRxHySHxxAyAyRxHySHx
2 vex xV
3 vex yV
4 2 3 brcnv xR-1yyRx
5 fvex HxV
6 fvex HyV
7 5 6 brcnv HxS-1HyHySHx
8 4 7 bibi12i xR-1yHxS-1HyyRxHySHx
9 8 2ralbii xAyAxR-1yHxS-1HyxAyAyRxHySHx
10 1 9 bitr4i yAxAyRxHySHxxAyAxR-1yHxS-1Hy
11 10 anbi2i H:A1-1 ontoByAxAyRxHySHxH:A1-1 ontoBxAyAxR-1yHxS-1Hy
12 df-isom HIsomR,SABH:A1-1 ontoByAxAyRxHySHx
13 df-isom HIsomR-1,S-1ABH:A1-1 ontoBxAyAxR-1yHxS-1Hy
14 11 12 13 3bitr4i HIsomR,SABHIsomR-1,S-1AB