Metamath Proof Explorer


Theorem isoco

Description: The composition of two isomorphisms is an isomorphism. Proposition 3.14(2) of Adamek p. 29. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses isoco.b B = Base C
isoco.o · ˙ = comp C
isoco.n I = Iso C
isoco.c φ C Cat
isoco.x φ X B
isoco.y φ Y B
isoco.z φ Z B
isoco.f φ F X I Y
isoco.g φ G Y I Z
Assertion isoco φ G X Y · ˙ Z F X I Z

Proof

Step Hyp Ref Expression
1 isoco.b B = Base C
2 isoco.o · ˙ = comp C
3 isoco.n I = Iso C
4 isoco.c φ C Cat
5 isoco.x φ X B
6 isoco.y φ Y B
7 isoco.z φ Z B
8 isoco.f φ F X I Y
9 isoco.g φ G Y I Z
10 eqid Inv C = Inv C
11 1 10 4 5 6 3 8 2 7 9 invco φ G X Y · ˙ Z F X Inv C Z X Inv C Y F Z Y · ˙ X Y Inv C Z G
12 1 10 4 5 7 3 11 inviso1 φ G X Y · ˙ Z F X I Z