Metamath Proof Explorer


Theorem isofr2

Description: A weak form of isofr that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014)

Ref Expression
Assertion isofr2 HIsomR,SABBVSFrBRFrA

Proof

Step Hyp Ref Expression
1 simpl HIsomR,SABBVHIsomR,SAB
2 imassrn HxranH
3 isof1o HIsomR,SABH:A1-1 ontoB
4 f1of H:A1-1 ontoBH:AB
5 frn H:ABranHB
6 3 4 5 3syl HIsomR,SABranHB
7 2 6 sstrid HIsomR,SABHxB
8 ssexg HxBBVHxV
9 7 8 sylan HIsomR,SABBVHxV
10 1 9 isofrlem HIsomR,SABBVSFrBRFrA