Metamath Proof Explorer


Theorem isoid

Description: Identity law for isomorphism. Proposition 6.30(1) of TakeutiZaring p. 33. (Contributed by NM, 27-Apr-2004)

Ref Expression
Assertion isoid IAIsomR,RAA

Proof

Step Hyp Ref Expression
1 f1oi IA:A1-1 ontoA
2 fvresi xAIAx=x
3 fvresi yAIAy=y
4 2 3 breqan12d xAyAIAxRIAyxRy
5 4 bicomd xAyAxRyIAxRIAy
6 5 rgen2 xAyAxRyIAxRIAy
7 df-isom IAIsomR,RAAIA:A1-1 ontoAxAyAxRyIAxRIAy
8 1 6 7 mpbir2an IAIsomR,RAA