Metamath Proof Explorer


Theorem isorcl

Description: Reverse closure for isomorphism relations. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses isorcl.i I = Iso C
isorcl.f φ F X I Y
Assertion isorcl φ C Cat

Proof

Step Hyp Ref Expression
1 isorcl.i I = Iso C
2 isorcl.f φ F X I Y
3 elfvne0 F I X Y I
4 df-ov X I Y = I X Y
5 3 4 eleq2s F X I Y I
6 1 neeq1i I Iso C
7 n0 Iso C x x Iso C
8 6 7 bitri I x x Iso C
9 5 8 sylib F X I Y x x Iso C
10 df-iso Iso = c Cat x V dom x Inv c
11 10 mptrcl x Iso C C Cat
12 11 exlimiv x x Iso C C Cat
13 2 9 12 3syl φ C Cat