Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Categories
Sections, inverses, isomorphisms
isorcl
Next ⟩
isorcl2
Metamath Proof Explorer
Ascii
Unicode
Theorem
isorcl
Description:
Reverse closure for isomorphism relations.
(Contributed by
Zhi Wang
, 17-Nov-2025)
Ref
Expression
Hypotheses
isorcl.i
⊢
I
=
Iso
⁡
C
isorcl.f
⊢
φ
→
F
∈
X
I
Y
Assertion
isorcl
⊢
φ
→
C
∈
Cat
Proof
Step
Hyp
Ref
Expression
1
isorcl.i
⊢
I
=
Iso
⁡
C
2
isorcl.f
⊢
φ
→
F
∈
X
I
Y
3
elfvne0
⊢
F
∈
I
⁡
X
Y
→
I
≠
∅
4
df-ov
⊢
X
I
Y
=
I
⁡
X
Y
5
3
4
eleq2s
⊢
F
∈
X
I
Y
→
I
≠
∅
6
1
neeq1i
⊢
I
≠
∅
↔
Iso
⁡
C
≠
∅
7
n0
⊢
Iso
⁡
C
≠
∅
↔
∃
x
x
∈
Iso
⁡
C
8
6
7
bitri
⊢
I
≠
∅
↔
∃
x
x
∈
Iso
⁡
C
9
5
8
sylib
⊢
F
∈
X
I
Y
→
∃
x
x
∈
Iso
⁡
C
10
df-iso
⊢
Iso
=
c
∈
Cat
⟼
x
∈
V
⟼
dom
⁡
x
∘
Inv
⁡
c
11
10
mptrcl
⊢
x
∈
Iso
⁡
C
→
C
∈
Cat
12
11
exlimiv
⊢
∃
x
x
∈
Iso
⁡
C
→
C
∈
Cat
13
2
9
12
3syl
⊢
φ
→
C
∈
Cat