Metamath Proof Explorer


Theorem isrhmd

Description: Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015)

Ref Expression
Hypotheses isrhmd.b B=BaseR
isrhmd.o 1˙=1R
isrhmd.n N=1S
isrhmd.t ·˙=R
isrhmd.u ×˙=S
isrhmd.r φRRing
isrhmd.s φSRing
isrhmd.ho φF1˙=N
isrhmd.ht φxByBFx·˙y=Fx×˙Fy
isrhmd.c C=BaseS
isrhmd.p +˙=+R
isrhmd.q ˙=+S
isrhmd.f φF:BC
isrhmd.hp φxByBFx+˙y=Fx˙Fy
Assertion isrhmd φFRRingHomS

Proof

Step Hyp Ref Expression
1 isrhmd.b B=BaseR
2 isrhmd.o 1˙=1R
3 isrhmd.n N=1S
4 isrhmd.t ·˙=R
5 isrhmd.u ×˙=S
6 isrhmd.r φRRing
7 isrhmd.s φSRing
8 isrhmd.ho φF1˙=N
9 isrhmd.ht φxByBFx·˙y=Fx×˙Fy
10 isrhmd.c C=BaseS
11 isrhmd.p +˙=+R
12 isrhmd.q ˙=+S
13 isrhmd.f φF:BC
14 isrhmd.hp φxByBFx+˙y=Fx˙Fy
15 ringgrp RRingRGrp
16 6 15 syl φRGrp
17 ringgrp SRingSGrp
18 7 17 syl φSGrp
19 1 10 11 12 16 18 13 14 isghmd φFRGrpHomS
20 1 2 3 4 5 6 7 8 9 19 isrhm2d φFRRingHomS