Metamath Proof Explorer


Theorem isrim

Description: An isomorphism of rings is a bijective homomorphism. (Contributed by AV, 22-Oct-2019) Remove sethood antecedent. (Revised by SN, 12-Jan-2025)

Ref Expression
Hypotheses rhmf1o.b B=BaseR
rhmf1o.c C=BaseS
Assertion isrim FRRingIsoSFRRingHomSF:B1-1 ontoC

Proof

Step Hyp Ref Expression
1 rhmf1o.b B=BaseR
2 rhmf1o.c C=BaseS
3 isrim0 FRRingIsoSFRRingHomSF-1SRingHomR
4 1 2 rhmf1o FRRingHomSF:B1-1 ontoCF-1SRingHomR
5 4 bicomd FRRingHomSF-1SRingHomRF:B1-1 ontoC
6 5 pm5.32i FRRingHomSF-1SRingHomRFRRingHomSF:B1-1 ontoC
7 3 6 bitri FRRingIsoSFRRingHomSF:B1-1 ontoC