Description: An isomorphism of rings is a bijective homomorphism. (Contributed by AV, 22-Oct-2019) Remove sethood antecedent. (Revised by SN, 12-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rhmf1o.b | |
|
rhmf1o.c | |
||
Assertion | isrim | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmf1o.b | |
|
2 | rhmf1o.c | |
|
3 | isrim0 | |
|
4 | 1 2 | rhmf1o | |
5 | 4 | bicomd | |
6 | 5 | pm5.32i | |
7 | 3 6 | bitri | |