Metamath Proof Explorer


Theorem isrimOLD

Description: Obsolete version of isrim as of 12-Jan-2025. (Contributed by AV, 22-Oct-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rhmf1o.b B=BaseR
rhmf1o.c C=BaseS
Assertion isrimOLD RVSWFRRingIsoSFRRingHomSF:B1-1 ontoC

Proof

Step Hyp Ref Expression
1 rhmf1o.b B=BaseR
2 rhmf1o.c C=BaseS
3 isrim0OLD RVSWFRRingIsoSFRRingHomSF-1SRingHomR
4 1 2 rhmf1o FRRingHomSF:B1-1 ontoCF-1SRingHomR
5 4 bicomd FRRingHomSF-1SRingHomRF:B1-1 ontoC
6 5 a1i RVSWFRRingHomSF-1SRingHomRF:B1-1 ontoC
7 6 pm5.32d RVSWFRRingHomSF-1SRingHomRFRRingHomSF:B1-1 ontoC
8 3 7 bitrd RVSWFRRingIsoSFRRingHomSF:B1-1 ontoC