Metamath Proof Explorer


Theorem isringid

Description: Properties showing that an element I is the unity element of a ring. (Contributed by NM, 7-Aug-2013)

Ref Expression
Hypotheses ringidm.b B=BaseR
ringidm.t ·˙=R
ringidm.u 1˙=1R
Assertion isringid RRingIBxBI·˙x=xx·˙I=x1˙=I

Proof

Step Hyp Ref Expression
1 ringidm.b B=BaseR
2 ringidm.t ·˙=R
3 ringidm.u 1˙=1R
4 eqid mulGrpR=mulGrpR
5 4 1 mgpbas B=BasemulGrpR
6 4 3 ringidval 1˙=0mulGrpR
7 4 2 mgpplusg ·˙=+mulGrpR
8 1 2 ringideu RRing∃!yBxBy·˙x=xx·˙y=x
9 reurex ∃!yBxBy·˙x=xx·˙y=xyBxBy·˙x=xx·˙y=x
10 8 9 syl RRingyBxBy·˙x=xx·˙y=x
11 5 6 7 10 ismgmid RRingIBxBI·˙x=xx·˙I=x1˙=I