Metamath Proof Explorer


Theorem isrnghmd

Description: Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020)

Ref Expression
Hypotheses isrnghmd.b B=BaseR
isrnghmd.t ·˙=R
isrnghmd.u ×˙=S
isrnghmd.r φRRng
isrnghmd.s φSRng
isrnghmd.ht φxByBFx·˙y=Fx×˙Fy
isrnghmd.c C=BaseS
isrnghmd.p +˙=+R
isrnghmd.q ˙=+S
isrnghmd.f φF:BC
isrnghmd.hp φxByBFx+˙y=Fx˙Fy
Assertion isrnghmd φFRRngHomoS

Proof

Step Hyp Ref Expression
1 isrnghmd.b B=BaseR
2 isrnghmd.t ·˙=R
3 isrnghmd.u ×˙=S
4 isrnghmd.r φRRng
5 isrnghmd.s φSRng
6 isrnghmd.ht φxByBFx·˙y=Fx×˙Fy
7 isrnghmd.c C=BaseS
8 isrnghmd.p +˙=+R
9 isrnghmd.q ˙=+S
10 isrnghmd.f φF:BC
11 isrnghmd.hp φxByBFx+˙y=Fx˙Fy
12 rngabl RRngRAbel
13 ablgrp RAbelRGrp
14 4 12 13 3syl φRGrp
15 rngabl SRngSAbel
16 ablgrp SAbelSGrp
17 5 15 16 3syl φSGrp
18 1 7 8 9 14 17 10 11 isghmd φFRGrpHomS
19 1 2 3 4 5 6 18 isrnghm2d φFRRngHomoS