Metamath Proof Explorer


Theorem issgrpd

Description: Deduce a semigroup from its properties. (Contributed by AV, 13-Feb-2025)

Ref Expression
Hypotheses issgrpd.b φB=BaseG
issgrpd.p φ+˙=+G
issgrpd.c φxByBx+˙yB
issgrpd.a φxByBzBx+˙y+˙z=x+˙y+˙z
issgrpd.v φGV
Assertion issgrpd Could not format assertion : No typesetting found for |- ( ph -> G e. Smgrp ) with typecode |-

Proof

Step Hyp Ref Expression
1 issgrpd.b φB=BaseG
2 issgrpd.p φ+˙=+G
3 issgrpd.c φxByBx+˙yB
4 issgrpd.a φxByBzBx+˙y+˙z=x+˙y+˙z
5 issgrpd.v φGV
6 3 3expib φxByBx+˙yB
7 1 eleq2d φxBxBaseG
8 1 eleq2d φyByBaseG
9 7 8 anbi12d φxByBxBaseGyBaseG
10 2 oveqd φx+˙y=x+Gy
11 10 1 eleq12d φx+˙yBx+GyBaseG
12 6 9 11 3imtr3d φxBaseGyBaseGx+GyBaseG
13 12 imp φxBaseGyBaseGx+GyBaseG
14 df-3an xByBzBxByBzB
15 14 4 sylan2br φxByBzBx+˙y+˙z=x+˙y+˙z
16 15 ex φxByBzBx+˙y+˙z=x+˙y+˙z
17 1 eleq2d φzBzBaseG
18 9 17 anbi12d φxByBzBxBaseGyBaseGzBaseG
19 eqidd φz=z
20 2 10 19 oveq123d φx+˙y+˙z=x+Gy+Gz
21 eqidd φx=x
22 2 oveqd φy+˙z=y+Gz
23 2 21 22 oveq123d φx+˙y+˙z=x+Gy+Gz
24 20 23 eqeq12d φx+˙y+˙z=x+˙y+˙zx+Gy+Gz=x+Gy+Gz
25 16 18 24 3imtr3d φxBaseGyBaseGzBaseGx+Gy+Gz=x+Gy+Gz
26 25 impl φxBaseGyBaseGzBaseGx+Gy+Gz=x+Gy+Gz
27 26 ralrimiva φxBaseGyBaseGzBaseGx+Gy+Gz=x+Gy+Gz
28 13 27 jca φxBaseGyBaseGx+GyBaseGzBaseGx+Gy+Gz=x+Gy+Gz
29 28 ralrimivva φxBaseGyBaseGx+GyBaseGzBaseGx+Gy+Gz=x+Gy+Gz
30 eqid BaseG=BaseG
31 eqid +G=+G
32 30 31 issgrpv Could not format ( G e. V -> ( G e. Smgrp <-> A. x e. ( Base ` G ) A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) e. ( Base ` G ) /\ A. z e. ( Base ` G ) ( ( x ( +g ` G ) y ) ( +g ` G ) z ) = ( x ( +g ` G ) ( y ( +g ` G ) z ) ) ) ) ) : No typesetting found for |- ( G e. V -> ( G e. Smgrp <-> A. x e. ( Base ` G ) A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) e. ( Base ` G ) /\ A. z e. ( Base ` G ) ( ( x ( +g ` G ) y ) ( +g ` G ) z ) = ( x ( +g ` G ) ( y ( +g ` G ) z ) ) ) ) ) with typecode |-
33 5 32 syl Could not format ( ph -> ( G e. Smgrp <-> A. x e. ( Base ` G ) A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) e. ( Base ` G ) /\ A. z e. ( Base ` G ) ( ( x ( +g ` G ) y ) ( +g ` G ) z ) = ( x ( +g ` G ) ( y ( +g ` G ) z ) ) ) ) ) : No typesetting found for |- ( ph -> ( G e. Smgrp <-> A. x e. ( Base ` G ) A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) e. ( Base ` G ) /\ A. z e. ( Base ` G ) ( ( x ( +g ` G ) y ) ( +g ` G ) z ) = ( x ( +g ` G ) ( y ( +g ` G ) z ) ) ) ) ) with typecode |-
34 29 33 mpbird Could not format ( ph -> G e. Smgrp ) : No typesetting found for |- ( ph -> G e. Smgrp ) with typecode |-