| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issgrpd.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) |
| 2 |
|
issgrpd.p |
⊢ ( 𝜑 → + = ( +g ‘ 𝐺 ) ) |
| 3 |
|
issgrpd.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 4 |
|
issgrpd.a |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 5 |
|
issgrpd.v |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
| 6 |
3
|
3expib |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) ) |
| 7 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) |
| 8 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) |
| 9 |
7 8
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ) |
| 10 |
2
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 11 |
10 1
|
eleq12d |
⊢ ( 𝜑 → ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ↔ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) ) |
| 12 |
6 9 11
|
3imtr3d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) ) |
| 13 |
12
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 14 |
|
df-3an |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ) |
| 15 |
14 4
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 16 |
15
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ) |
| 17 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) |
| 18 |
9 17
|
anbi12d |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) ) |
| 19 |
|
eqidd |
⊢ ( 𝜑 → 𝑧 = 𝑧 ) |
| 20 |
2 10 19
|
oveq123d |
⊢ ( 𝜑 → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 21 |
|
eqidd |
⊢ ( 𝜑 → 𝑥 = 𝑥 ) |
| 22 |
2
|
oveqd |
⊢ ( 𝜑 → ( 𝑦 + 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 23 |
2 21 22
|
oveq123d |
⊢ ( 𝜑 → ( 𝑥 + ( 𝑦 + 𝑧 ) ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 24 |
20 23
|
eqeq12d |
⊢ ( 𝜑 → ( ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ↔ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) |
| 25 |
16 18 24
|
3imtr3d |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) |
| 26 |
25
|
impl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 27 |
26
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 28 |
13 27
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) |
| 29 |
28
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) |
| 30 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 31 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 32 |
30 31
|
issgrpv |
⊢ ( 𝐺 ∈ 𝑉 → ( 𝐺 ∈ Smgrp ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) ) |
| 33 |
5 32
|
syl |
⊢ ( 𝜑 → ( 𝐺 ∈ Smgrp ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ) ) |
| 34 |
29 33
|
mpbird |
⊢ ( 𝜑 → 𝐺 ∈ Smgrp ) |