Metamath Proof Explorer


Theorem istermc2

Description: The predicate "is a terminal category". A terminal category is a thin category with exactly one object. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypothesis istermc.b B = Base C
Assertion istermc2 Could not format assertion : No typesetting found for |- ( C e. TermCat <-> ( C e. ThinCat /\ E! x x e. B ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 istermc.b B = Base C
2 1 istermc Could not format ( C e. TermCat <-> ( C e. ThinCat /\ E. x B = { x } ) ) : No typesetting found for |- ( C e. TermCat <-> ( C e. ThinCat /\ E. x B = { x } ) ) with typecode |-
3 eusn ∃! x x B x B = x
4 3 anbi2i C ThinCat ∃! x x B C ThinCat x B = x
5 2 4 bitr4i Could not format ( C e. TermCat <-> ( C e. ThinCat /\ E! x x e. B ) ) : No typesetting found for |- ( C e. TermCat <-> ( C e. ThinCat /\ E! x x e. B ) ) with typecode |-