Metamath Proof Explorer


Theorem istpsi

Description: Properties that determine a topological space. (Contributed by NM, 20-Oct-2012)

Ref Expression
Hypotheses istpsi.b BaseK=A
istpsi.j TopOpenK=J
istpsi.1 A=J
istpsi.2 JTop
Assertion istpsi KTopSp

Proof

Step Hyp Ref Expression
1 istpsi.b BaseK=A
2 istpsi.j TopOpenK=J
3 istpsi.1 A=J
4 istpsi.2 JTop
5 1 eqcomi A=BaseK
6 2 eqcomi J=TopOpenK
7 5 6 istps2 KTopSpJTopA=J
8 4 3 7 mpbir2an KTopSp