Metamath Proof Explorer


Theorem istrkgb

Description: Property of being a Tarski geometry - betweenness part. (Contributed by Thierry Arnoux, 14-Mar-2019)

Ref Expression
Hypotheses istrkg.p P=BaseG
istrkg.d -˙=distG
istrkg.i I=ItvG
Assertion istrkgb G𝒢TarskiBGVxPyPyxIxx=yxPyPzPuPvPuxIzvyIzaPauIyavIxs𝒫Pt𝒫PaPxsytxaIybPxsytbxIy

Proof

Step Hyp Ref Expression
1 istrkg.p P=BaseG
2 istrkg.d -˙=distG
3 istrkg.i I=ItvG
4 simpl p=Pi=Ip=P
5 simpr p=Pi=Ii=I
6 5 oveqd p=Pi=Ixix=xIx
7 6 eleq2d p=Pi=IyxixyxIx
8 7 imbi1d p=Pi=Iyxixx=yyxIxx=y
9 4 8 raleqbidv p=Pi=Iypyxixx=yyPyxIxx=y
10 4 9 raleqbidv p=Pi=Ixpypyxixx=yxPyPyxIxx=y
11 5 oveqd p=Pi=Ixiz=xIz
12 11 eleq2d p=Pi=IuxizuxIz
13 5 oveqd p=Pi=Iyiz=yIz
14 13 eleq2d p=Pi=IvyizvyIz
15 12 14 anbi12d p=Pi=IuxizvyizuxIzvyIz
16 5 oveqd p=Pi=Iuiy=uIy
17 16 eleq2d p=Pi=IauiyauIy
18 5 oveqd p=Pi=Ivix=vIx
19 18 eleq2d p=Pi=IavixavIx
20 17 19 anbi12d p=Pi=IauiyavixauIyavIx
21 4 20 rexeqbidv p=Pi=IapauiyavixaPauIyavIx
22 15 21 imbi12d p=Pi=IuxizvyizapauiyavixuxIzvyIzaPauIyavIx
23 4 22 raleqbidv p=Pi=IvpuxizvyizapauiyavixvPuxIzvyIzaPauIyavIx
24 4 23 raleqbidv p=Pi=IupvpuxizvyizapauiyavixuPvPuxIzvyIzaPauIyavIx
25 4 24 raleqbidv p=Pi=IzpupvpuxizvyizapauiyavixzPuPvPuxIzvyIzaPauIyavIx
26 4 25 raleqbidv p=Pi=IypzpupvpuxizvyizapauiyavixyPzPuPvPuxIzvyIzaPauIyavIx
27 4 26 raleqbidv p=Pi=IxpypzpupvpuxizvyizapauiyavixxPyPzPuPvPuxIzvyIzaPauIyavIx
28 4 pweqd p=Pi=I𝒫p=𝒫P
29 5 oveqd p=Pi=Iaiy=aIy
30 29 eleq2d p=Pi=IxaiyxaIy
31 30 2ralbidv p=Pi=IxsytxaiyxsytxaIy
32 4 31 rexeqbidv p=Pi=IapxsytxaiyaPxsytxaIy
33 5 oveqd p=Pi=Ixiy=xIy
34 33 eleq2d p=Pi=IbxiybxIy
35 34 2ralbidv p=Pi=IxsytbxiyxsytbxIy
36 4 35 rexeqbidv p=Pi=IbpxsytbxiybPxsytbxIy
37 32 36 imbi12d p=Pi=IapxsytxaiybpxsytbxiyaPxsytxaIybPxsytbxIy
38 28 37 raleqbidv p=Pi=It𝒫papxsytxaiybpxsytbxiyt𝒫PaPxsytxaIybPxsytbxIy
39 28 38 raleqbidv p=Pi=Is𝒫pt𝒫papxsytxaiybpxsytbxiys𝒫Pt𝒫PaPxsytxaIybPxsytbxIy
40 10 27 39 3anbi123d p=Pi=Ixpypyxixx=yxpypzpupvpuxizvyizapauiyavixs𝒫pt𝒫papxsytxaiybpxsytbxiyxPyPyxIxx=yxPyPzPuPvPuxIzvyIzaPauIyavIxs𝒫Pt𝒫PaPxsytxaIybPxsytbxIy
41 1 3 40 sbcie2s f=G[˙Basef/p]˙[˙Itvf/i]˙xpypyxixx=yxpypzpupvpuxizvyizapauiyavixs𝒫pt𝒫papxsytxaiybpxsytbxiyxPyPyxIxx=yxPyPzPuPvPuxIzvyIzaPauIyavIxs𝒫Pt𝒫PaPxsytxaIybPxsytbxIy
42 df-trkgb 𝒢TarskiB=f|[˙Basef/p]˙[˙Itvf/i]˙xpypyxixx=yxpypzpupvpuxizvyizapauiyavixs𝒫pt𝒫papxsytxaiybpxsytbxiy
43 41 42 elab4g G𝒢TarskiBGVxPyPyxIxx=yxPyPzPuPvPuxIzvyIzaPauIyavIxs𝒫Pt𝒫PaPxsytxaIybPxsytbxIy