| Step |
Hyp |
Ref |
Expression |
| 1 |
|
istrkg.p |
|
| 2 |
|
istrkg.d |
|
| 3 |
|
istrkg.i |
|
| 4 |
|
simp1 |
|
| 5 |
4
|
eqcomd |
|
| 6 |
5
|
adantr |
|
| 7 |
6
|
adantr |
|
| 8 |
7
|
adantr |
|
| 9 |
8
|
adantr |
|
| 10 |
9
|
adantr |
|
| 11 |
5
|
ad6antr |
|
| 12 |
6
|
ad6antr |
|
| 13 |
|
simpll3 |
|
| 14 |
13
|
ad6antr |
|
| 15 |
14
|
eqcomd |
|
| 16 |
15
|
oveqd |
|
| 17 |
16
|
eleq2d |
|
| 18 |
15
|
oveqd |
|
| 19 |
18
|
eleq2d |
|
| 20 |
17 19
|
3anbi23d |
|
| 21 |
|
simpll2 |
|
| 22 |
21
|
ad6antr |
|
| 23 |
22
|
eqcomd |
|
| 24 |
23
|
oveqd |
|
| 25 |
23
|
oveqd |
|
| 26 |
24 25
|
eqeq12d |
|
| 27 |
23
|
oveqd |
|
| 28 |
23
|
oveqd |
|
| 29 |
27 28
|
eqeq12d |
|
| 30 |
26 29
|
anbi12d |
|
| 31 |
23
|
oveqd |
|
| 32 |
23
|
oveqd |
|
| 33 |
31 32
|
eqeq12d |
|
| 34 |
23
|
oveqd |
|
| 35 |
23
|
oveqd |
|
| 36 |
34 35
|
eqeq12d |
|
| 37 |
33 36
|
anbi12d |
|
| 38 |
30 37
|
anbi12d |
|
| 39 |
20 38
|
anbi12d |
|
| 40 |
23
|
oveqd |
|
| 41 |
23
|
oveqd |
|
| 42 |
40 41
|
eqeq12d |
|
| 43 |
39 42
|
imbi12d |
|
| 44 |
12 43
|
raleqbidva |
|
| 45 |
11 44
|
raleqbidva |
|
| 46 |
10 45
|
raleqbidva |
|
| 47 |
9 46
|
raleqbidva |
|
| 48 |
8 47
|
raleqbidva |
|
| 49 |
7 48
|
raleqbidva |
|
| 50 |
6 49
|
raleqbidva |
|
| 51 |
5 50
|
raleqbidva |
|
| 52 |
7
|
adantr |
|
| 53 |
52
|
adantr |
|
| 54 |
13
|
ad3antrrr |
|
| 55 |
54
|
eqcomd |
|
| 56 |
55
|
oveqd |
|
| 57 |
56
|
eleq2d |
|
| 58 |
21
|
ad3antrrr |
|
| 59 |
58
|
eqcomd |
|
| 60 |
59
|
oveqd |
|
| 61 |
59
|
oveqd |
|
| 62 |
60 61
|
eqeq12d |
|
| 63 |
57 62
|
anbi12d |
|
| 64 |
53 63
|
rexeqbidva |
|
| 65 |
52 64
|
raleqbidva |
|
| 66 |
7 65
|
raleqbidva |
|
| 67 |
6 66
|
raleqbidva |
|
| 68 |
5 67
|
raleqbidva |
|
| 69 |
51 68
|
anbi12d |
|
| 70 |
1 2 3 69
|
sbcie3s |
|
| 71 |
|
df-trkgcb |
|
| 72 |
70 71
|
elab4g |
|