Metamath Proof Explorer


Theorem isufl

Description: Define the (strong) ultrafilter lemma, parameterized over base sets. A set X satisfies the ultrafilter lemma if every filter on X is a subset of some ultrafilter. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion isufl XVXUFLfFilXgUFilXfg

Proof

Step Hyp Ref Expression
1 fveq2 x=XFilx=FilX
2 fveq2 x=XUFilx=UFilX
3 2 rexeqdv x=XgUFilxfggUFilXfg
4 1 3 raleqbidv x=XfFilxgUFilxfgfFilXgUFilXfg
5 df-ufl UFL=x|fFilxgUFilxfg
6 4 5 elab2g XVXUFLfFilXgUFilXfg