Metamath Proof Explorer


Theorem isxmetd

Description: Properties that determine an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015) (Revised by AV, 9-Apr-2024)

Ref Expression
Hypotheses isxmetd.0 φXV
isxmetd.1 φD:X×X*
isxmetd.2 φxXyXxDy=0x=y
isxmetd.3 φxXyXzXxDyzDx+𝑒zDy
Assertion isxmetd φD∞MetX

Proof

Step Hyp Ref Expression
1 isxmetd.0 φXV
2 isxmetd.1 φD:X×X*
3 isxmetd.2 φxXyXxDy=0x=y
4 isxmetd.3 φxXyXzXxDyzDx+𝑒zDy
5 4 3exp2 φxXyXzXxDyzDx+𝑒zDy
6 5 imp32 φxXyXzXxDyzDx+𝑒zDy
7 6 ralrimiv φxXyXzXxDyzDx+𝑒zDy
8 3 7 jca φxXyXxDy=0x=yzXxDyzDx+𝑒zDy
9 8 ralrimivva φxXyXxDy=0x=yzXxDyzDx+𝑒zDy
10 isxmet XVD∞MetXD:X×X*xXyXxDy=0x=yzXxDyzDx+𝑒zDy
11 1 10 syl φD∞MetXD:X×X*xXyXxDy=0x=yzXxDyzDx+𝑒zDy
12 2 9 11 mpbir2and φD∞MetX