Metamath Proof Explorer


Theorem iuncom4

Description: Commutation of union with indexed union. (Contributed by Mario Carneiro, 18-Jan-2014)

Ref Expression
Assertion iuncom4 xAB=xAB

Proof

Step Hyp Ref Expression
1 df-rex zByzzzByz
2 1 rexbii xAzByzxAzzByz
3 rexcom4 xAzzByzzxAzByz
4 2 3 bitri xAzByzzxAzByz
5 r19.41v xAzByzxAzByz
6 5 exbii zxAzByzzxAzByz
7 4 6 bitri xAzByzzxAzByz
8 eluni2 yBzByz
9 8 rexbii xAyBxAzByz
10 df-rex zxAByzzzxAByz
11 eliun zxABxAzB
12 11 anbi1i zxAByzxAzByz
13 12 exbii zzxAByzzxAzByz
14 10 13 bitri zxAByzzxAzByz
15 7 9 14 3bitr4i xAyBzxAByz
16 eliun yxABxAyB
17 eluni2 yxABzxAByz
18 15 16 17 3bitr4i yxAByxAB
19 18 eqriv xAB=xAB