Metamath Proof Explorer


Theorem iundisjcnt

Description: Rewrite a countable union as a disjoint union. (Contributed by Thierry Arnoux, 16-Feb-2017)

Ref Expression
Hypotheses iundisjcnt.0 _nB
iundisjcnt.1 n=kA=B
iundisjcnt.2 φN=N=1..^M
Assertion iundisjcnt φnNA=nNAk1..^nB

Proof

Step Hyp Ref Expression
1 iundisjcnt.0 _nB
2 iundisjcnt.1 n=kA=B
3 iundisjcnt.2 φN=N=1..^M
4 nfcv _kA
5 4 1 2 iundisjf nA=nAk1..^nB
6 simpr φN=N=
7 6 iuneq1d φN=nNA=nA
8 6 iuneq1d φN=nNAk1..^nB=nAk1..^nB
9 5 7 8 3eqtr4a φN=nNA=nNAk1..^nB
10 1 2 iundisjfi n1..^MA=n1..^MAk1..^nB
11 simpr φN=1..^MN=1..^M
12 11 iuneq1d φN=1..^MnNA=n1..^MA
13 11 iuneq1d φN=1..^MnNAk1..^nB=n1..^MAk1..^nB
14 10 12 13 3eqtr4a φN=1..^MnNA=nNAk1..^nB
15 9 14 3 mpjaodan φnNA=nNAk1..^nB