Metamath Proof Explorer


Theorem iuneqconst

Description: Indexed union of identical classes. (Contributed by AV, 5-Mar-2024)

Ref Expression
Hypothesis iuneqconst.p x=XB=C
Assertion iuneqconst XAxAB=CxAB=C

Proof

Step Hyp Ref Expression
1 iuneqconst.p x=XB=C
2 eliun yxABxAyB
3 1 eleq2d x=XyByC
4 3 rspcev XAyCxAyB
5 4 adantlr XAxAB=CyCxAyB
6 5 ex XAxAB=CyCxAyB
7 nfv xXA
8 nfra1 xxAB=C
9 7 8 nfan xXAxAB=C
10 nfv xyC
11 rsp xAB=CxAB=C
12 eleq2 B=CyByC
13 12 biimpd B=CyByC
14 11 13 syl6 xAB=CxAyByC
15 14 adantl XAxAB=CxAyByC
16 9 10 15 rexlimd XAxAB=CxAyByC
17 6 16 impbid XAxAB=CyCxAyB
18 2 17 bitr4id XAxAB=CyxAByC
19 18 eqrdv XAxAB=CxAB=C