Metamath Proof Explorer


Theorem iunxiun

Description: Separate an indexed union in the index of an indexed union. (Contributed by Mario Carneiro, 5-Dec-2016)

Ref Expression
Assertion iunxiun xyABC=yAxBC

Proof

Step Hyp Ref Expression
1 eliun xyAByAxB
2 1 anbi1i xyABzCyAxBzC
3 r19.41v yAxBzCyAxBzC
4 2 3 bitr4i xyABzCyAxBzC
5 4 exbii xxyABzCxyAxBzC
6 rexcom4 yAxxBzCxyAxBzC
7 5 6 bitr4i xxyABzCyAxxBzC
8 df-rex xyABzCxxyABzC
9 eliun zxBCxBzC
10 df-rex xBzCxxBzC
11 9 10 bitri zxBCxxBzC
12 11 rexbii yAzxBCyAxxBzC
13 7 8 12 3bitr4i xyABzCyAzxBC
14 eliun zxyABCxyABzC
15 eliun zyAxBCyAzxBC
16 13 14 15 3bitr4i zxyABCzyAxBC
17 16 eqriv xyABC=yAxBC