Metamath Proof Explorer


Theorem jm2.27dlem1

Description: Lemma for rmydioph . Substitution of a tuple restriction into a projection that doesn't care. (Contributed by Stefan O'Rear, 11-Oct-2014)

Ref Expression
Hypothesis jm2.27dlem1.1 A1B
Assertion jm2.27dlem1 a=b1BaA=bA

Proof

Step Hyp Ref Expression
1 jm2.27dlem1.1 A1B
2 fveq1 a=b1BaA=b1BA
3 fvres A1Bb1BA=bA
4 1 3 ax-mp b1BA=bA
5 2 4 eqtrdi a=b1BaA=bA