Metamath Proof Explorer


Theorem joiniooico

Description: Disjoint joining an open interval with a closed-below, open-above interval to form a closed-below, open-above interval. (Contributed by Thierry Arnoux, 26-Sep-2017)

Ref Expression
Assertion joiniooico A*B*C*A<BBCABBC=ABBC=AC

Proof

Step Hyp Ref Expression
1 df-ioo .=a*,b*x*|a<xx<b
2 df-ico .=a*,b*x*|axx<b
3 xrlenlt B*w*Bw¬w<B
4 1 2 3 ixxdisj A*B*C*ABBC=
5 4 adantr A*B*C*A<BBCABBC=
6 xrltletr w*B*C*w<BBCw<C
7 xrltletr A*B*w*A<BBwA<w
8 1 2 3 1 6 7 ixxun A*B*C*A<BBCABBC=AC
9 5 8 jca A*B*C*A<BBCABBC=ABBC=AC