Metamath Proof Explorer


Theorem knoppcnlem3

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcnlem3.t T = x x + 1 2 x
knoppcnlem3.f F = y n 0 C n T 2 N n y
knoppcnlem3.n φ N
knoppcnlem3.1 φ C
knoppcnlem3.2 φ A
knoppcnlem3.3 φ M 0
Assertion knoppcnlem3 φ F A M

Proof

Step Hyp Ref Expression
1 knoppcnlem3.t T = x x + 1 2 x
2 knoppcnlem3.f F = y n 0 C n T 2 N n y
3 knoppcnlem3.n φ N
4 knoppcnlem3.1 φ C
5 knoppcnlem3.2 φ A
6 knoppcnlem3.3 φ M 0
7 2 5 6 knoppcnlem1 φ F A M = C M T 2 N M A
8 1 3 4 5 6 knoppcnlem2 φ C M T 2 N M A
9 7 8 eqeltrd φ F A M