Metamath Proof Explorer


Theorem kqhmph

Description: A topological space is T_0 iff it is homeomorphic to its Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion kqhmph JKol2JKQJ

Proof

Step Hyp Ref Expression
1 t0top JKol2JTop
2 toptopon2 JTopJTopOnJ
3 1 2 sylib JKol2JTopOnJ
4 eqid xJyJ|xy=xJyJ|xy
5 4 t0kq JTopOnJJKol2xJyJ|xyJHomeoKQJ
6 3 5 syl JKol2JKol2xJyJ|xyJHomeoKQJ
7 6 ibi JKol2xJyJ|xyJHomeoKQJ
8 hmphi xJyJ|xyJHomeoKQJJKQJ
9 7 8 syl JKol2JKQJ
10 hmphsym JKQJKQJJ
11 hmphtop1 JKQJJTop
12 kqt0 JTopKQJKol2
13 11 12 sylib JKQJKQJKol2
14 t0hmph KQJJKQJKol2JKol2
15 10 13 14 sylc JKQJJKol2
16 9 15 impbii JKol2JKQJ